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SUMMARY

We present two-dimensional numerical simulations of a natural convection problem in an unbounded
domain. The flow circulation is induced by a heat island located on the ground and thermal stratification
is applied in the vertical direction. The main effect of this stably stratified environment is to induce the
propagation of thermal perturbations in the horizontal direction far from the local thermal source. Numerical
stationary solutions at Ra�105 are computed in large elongated computational domains: convergence with
respect to the domain sizes is investigated at different resolutions. On fine grids, with mesh size h= 1

128 ,
a thermal sponge layer is added at the vertical boundaries: this local damping technique improves
the convergence with respect to the domain length. Boussinesq equations are discretized with a second-
order finite volume scheme on a staggered grid combined with a second-order projection method for the
time integration. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper we present numerical simulations of a particular type of thermal fluid flows, namely,
we are concerned with the so-called heat island flows [1], i.e. fluid flows where natural convection
is generated by a local variation of temperature, thus inducing buoyancy effect. This phenomenon
appears in the presence of heat stratification that stabilizes the fluid flow. The present model is
generally used to study environment problems such as urban heat island [2, 3]. Heat island fluid
flows occur in open configurations, which require, from the mathematical viewpoint, their study in
unbounded domains. In practice, numerical simulations are carried out in large but bounded compu-
tational domains for which the appropriate design of boundary conditions must be investigated.
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For this problem, the heat island perturbation generates an ascending flow circulation that
develops mainly in an area surrounding the heated element. The vertical stratification limits this
effect by restricting the vertical flow circulation that is forced to extend in the horizontal direction.
At low Rayleigh numbers the flow is stationary and the thermal circulation consists in a symmetric
and centered multi-cell pattern. Above the heat source, a zone of colder air is observed. When
the Rayleigh number is sufficiently large, the symmetry is broken: oscillations with respect to the
center of the heat island evolve in a time periodic regime. The numerical study of the development
of instabilities and the detection of successive transitions from steady-state to time-dependent
flows, namely, periodic, quasi-periodic and finally chaotic (turbulent), is our main motivation for
this problem. A preliminary study is presented in [4].

In most studies devoted to natural convections in a stratified environment, the flow fills a closed
area or is driven by an inflow velocity imposed on one of the vertical boundaries (see [5–7], for
instance). In the latter case, outflow boundary conditions of Neumann type are appropriate. Their
aim is to model an open situation for which the flow is free to move through the exit plane, outside
the computational domain. For the computation of natural convection flows driven by a local heated
source in unbounded domains, the far-field behavior of the solution is generally not known (see [8]
and the references therein). Owing to the stratified environment of the heat island problem, thermal
perturbations are propagated in the horizontal direction far from the heated element. The vertical
boundaries can then be either inflow or outflow boundaries, even both. The numerical simulations
are carried out in large but bounded computational domains on which artificial boundary conditions
are applied. Therefore, the numerical simulations depend not only on the numerical parameters
such as the mesh size and the time step but also on the domain size, generally expressed in terms
of the distance from the heated element.

When seeking transitions from steady to unsteady solutions with respect to a flow parameter,
the reliability of the numerical results strongly depends on the accuracy of the simulations (see
[9], for instance). Therefore, for the problem considered in this paper, estimating the effect of the
computational domain length and height on the numerical solutions is essential. The elevation of
the heat island is reduced by the vertical stratification so that the domain height necessary to obtain
accurate numerical solutions is not large. In this context, the numerical simulations are performed
in very elongated domains. For various Rayleigh numbers and spatial resolutions, we attempt to
achieve a thorough investigation of the dependency of the numerical results on the computational
domain length and height. For such a study, we chose to focus on the computation of stationary
solutions. Indeed, steady-state solutions are more appropriate than time-dependent solutions as
they offer a large choice of characteristic values that can be used in order to compare simulations
performed with different parameters. Our main objective is to provide reference solutions. These
results provide a background for further studies and analysis of heat island flows.

This approach is feasible on coarse to moderately fine grids (h� 1
64 ). However, despite the

increase in computational resources, direct numerical simulation on finer grids remains unreachable.
In order to overcome this difficulty, we propose to apply a thermal sponge layer in the vicinity
of the vertical boundaries: the temperature equation is locally modified so that the convective
terms are smoothly damped in the vicinity of the vertical boundaries. Boundary conditions with a
sponge are classically employed in computational electromagnetics [10, 11] and in simulations of
compressible turbulent flows [12, 13]. We show that this technique is well suited for the numerical
simulations of heat-island-type flows at Rayleigh numbers Ra�105.

The outline of this paper is as follows. In the following section, we describe the set of equations
that govern the fluid flow in a heat island as well as the domain geometry and boundary conditions.
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In particular, we express the equations in a nondimensional form that involves two parameters, the
Rayleigh number and a thermal stratification coefficient. We show that a specific choice of relevant
parameters is to be made here for the heat island flow. Section 3 describes approximations in
closed domains. Two approaches are used: the former relies on the use of very large computational
domains without any particular treatment at the domain exits, whereas the latter introduces thermal
sponge layers acting in the vicinity of the vertical boundaries. Section 4 presents the space and
time discretization schemes. Preliminary numerical results were obtained by Touzani [14] using a
finite element method coupled with a penalty method to impose the incompressibility constraint.
Here, we use a second-order finite volume scheme on a staggered grid for space discretization and
a second-order projection method for the time integration of the resulting system of differential
equations. Section 5 gives numerical results. Numerical simulations in a square differentially heated
cavity are first performed to check the code accuracy. Stationary solutions to the heat island problem
at Ra�105 are obtained in very elongated computational domains and are used as references to
validate the sponge technique applied to the heat equation. Accurate stationary solutions are then
computed with this approach: characteristic values are listed for reference. Finally, conclusions are
drawn and perspectives for future works on this problem are discussed.

2. DESCRIPTION OF THE PROBLEM

2.1. The physical problem

We consider a fluid that fills the half plane {x� =(x�, y�)∈R2; y�>0}. Here and in the sequel
we shall append a superscript � to all physical dependent and independent variables, the notation
without � being reserved to nondimensional variables. The fluid is initially at rest and is ther-
mally stratified in the vertical direction, namely the velocity field u� =(u�,v�) and the potential
temperature T � satisfy, at time t� =0,

u� =0 (1)

T � =T0+�sy
� (2)

where T0>0 is the potential temperature at the ground and �s>0 is the thermal stratification
coefficient.

In order to generate a flow, a local temperature of intensity T1>T0 is applied on a source line
Q� =(−�/2,�/2), �>0, located on the ground (see Figure 1), that is, we impose

T ∗(x∗, t∗)=T0+ (T1−T0)

2

(
tanh

(
2x∗+�

2��

)
− tanh

(
2x∗−�

2��

))
(3)

for all x∗ ∈R2∩{y∗ =0} and for all time t∗>0. Note that this thermal perturbation is constant in
time and is a regularized version of a heat-island-type perturbation (see [3], for instance) for which
a constant and uniform temperature would be applied on the heated element Q�. The parameter �>0
in (3) is used to set the sharpness of the temperature gradient �T ∗/�x∗ near the plate boundaries
|x∗|=�/2 at the ground level y∗ =0. In this study, the value �=2.5×10−2 is used.

Owing to perturbation (3), a thermal plume develops above the heated plate Q�. Natural convec-
tion induces an ascending flow circulation, whereas the gravity force and the vertical stratification
limit the development of flow structures in the vertical direction. As a consequence of these
opposite forces, thermal perturbations are propagated in the horizontal direction at long distance,
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Figure 1. Heat island perturbation.

far from the heated element. We may then expect that the solutions will decay rapidly in the
vertical direction and very slowly in the horizontal one. The main difficulty for this problem, as
far as numerical simulations are concerned, resides in a suitable design of boundary conditions in
order to properly reproduce the behavior of the far-field solutions. Indeed, errors in the numerical
approximation at long distance from the heated plate may reduce the accuracy of simulations in
the region surrounding the heated element.

2.2. The governing equations

We consider the set of equations describing a two-dimensional thermal flow assuming Boussinesq
approximation. Let us recall that this one stipulates that for small temperature differences, the
density variations are more significant in the gravity acceleration term than in others.

Velocity u∗, pressure p∗, density �∗ and potential temperature T ∗ satisfy the set of equations

�u∗

�t∗
−��∗u∗+∇∗ ·(u∗⊗u∗)+ 1

�0
∇∗ p∗ =−�∗

�0
ge2 (4)

∇∗ ·u∗ =0 (5)

�T ∗

�t∗
−��∗T ∗+∇∗ ·(u∗T ∗)=0 (6)

u∗(x∗,0)=0, T ∗(x∗,0)=T0+�sy
∗ (7)

where the physical constants are the kinematic viscosity �, the thermal diffusivity � and the
modulus of gravity acceleration g. The unit vector in the vertical direction is denoted by e2, namely
e2=(0,1).

For these type of flows, we have adopted the approximation that compressibility is expressed
by a dilatation equation. Therefore, density is related to the temperature variations with respect to
the reference state (T0,�0), by the following equation:

�∗ =�0(1−�(T ∗−T0)) (8)

where � is the thermal expansion coefficient. Equations (4)–(8) are to be considered in the infinite
domain R×R+ where the line y∗ =0 contains the heated plate Q∗ =(−�/2,�/2). Such a problem
with appropriate behavior at infinity is well suited for generating a heat island flow in the vicinity
of the heated plate if a thermal stratification is given.

The boundary condition (3) has an effect of generating, in the neighborhood of the plate Q∗, a
temperature plume with a shape and an intensity depending on the system parameters.
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2.3. Nondimensional form of the equations

In order to normalize the problem, we introduce as usual reference values for temperature Tr=
T1−T0, length L r=� and velocity Ur=

√
g�L rTr. Reference values for time and pressure can then

be deduced by tr= L r/Ur and pr=�0U
2
r , respectively. We define nondimensional space and time

variables by x=x∗/L r and t= t∗/tr. In terms of these nondimensional variables, the heated plate
reads Q=(− 1

2 ,
1
2 ). The nondimensional variables

u= u∗

Ur
, T = T ∗−T0

Tr
and p= p∗+�0gy

∗

pr
(9)

satisfy in R×R+ and for t>0 the following system of equations:

�u
�t

−
√

Pr

Ra
�u+∇ ·(u⊗u)+∇p=T e2 (10)

∇ ·u=0 (11)

�T
�t

− 1√
Ra Pr

�T +∇·(uT )=0 (12)

u(x,0)=0, T (x,0)=�y (13)

where �=�sL r/Tr. The Prandtl and Rayleigh numbers are, respectively, defined by

Pr = �

�
and Ra= g�L3

RTR
��

The nondimensional form of the boundary condition (3) reads

T (x, t)= 1

2

(
tanh

(
2x+1

2�

)
− tanh

(
2x−1

2�

))
for x=(x,0) (14)

To simplify, we set the Prandtl number that characterizes the fluid to its value for the air, Pr =0.71.
Therefore, the system of Equations (10)–(13) depends on two parameters Ra and �.

For a fixed stratification coefficient �, when the Rayleigh number is increased the solutions
of (10)–(13) are expected to evolve from stationary to chaotic (turbulent) ones following a Hopf
bifurcation scheme. The critical value of Ra corresponding to the first bifurcation, i.e. transition
from a steady state to a time periodic signal, may depend on the value of the stratification
coefficient. Preliminary results on coarse grids and with �=1 are presented in [4]: stationary
solutions are found at Ra=105 and 2.5×105, whereas a time periodic solution is obtained at
Ra=5×105. For natural convection flows driven by a local heated source in unbounded domains,
the reliability of numerical simulations depends on the numerical parameters as the mesh size and
on the computational domain (see [15]).

In this paper we focus on stationary solutions and study their dependency on the size of
the computational domain for a stratification coefficient set to unity. Steady-state solutions are
appropriate for such investigations as they offer a large choice of characteristic values useful to
estimate the convergence rate with respect to any parameters.
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3. APPROXIMATION IN CLOSED DOMAIN

3.1. Large elongated domain

Clearly, problem (10)–(14) is difficult to handle numerically in an unbounded domain. We choose to
approximate R×R+ by a rectangle �=(−L/2, L/2)×(0,H) with L large enough (see Figure 2)
and we denote by� its boundary. A simple and naive approach would consist in imposing conditions
on � consistent with the initial condition (13) and the boundary condition (14). Therefore, Equations
(10)–(13) are supplemented with the boundary conditions

u(x, t)=0, x∈� (15)

T (x, t)= 1

2

(
tanh

(
2x+1

2�

)
− tanh

(
2x−1

2�

))
, x∈�0={x∈�; y=0} (16)

T (x, t)=�y, x∈�\�0 (17)

for all time t>0.
Such conditions can be enforced only if the domain lengths L and H are large enough so that

their change has a negligible effect on the solution. As it was previously mentioned, the gravity
force and the stratified profile (17) tend to push the flow down to the ground, limiting the vertical
convection. Therefore, the flow variables have a rapid decay with respect to the elevation y, so
that the domain height H does not need to be too large. The heat island perturbation generates an
ascending flow circulation that is essentially local. On the other hand, thermal perturbations are
convected in the horizontal direction at long distance far from the heated source line. Therefore,
very elongated computational domains have to be considered, that is L�H and L�1, in order
to produce accurate solutions.

3.2. A truncated temperature equation

We shall see in the development of this study that the above approach is very consuming in
terms of computational resources inducing strong limitations on the allowable grid resolution.
Indeed, if the domain length L is not large enough, artificial boundary layers develop at the domain
boundaries |x |= L/2 inducing an overestimation of the flow variables. These numerical errors
deteriorate the accuracy of the solutions in the central area where most of the flow dynamics
take place. An appropriate design of the behavior of the solution close to these boundaries is
necessary in order to relax the condition L�1 on the domain length. To do so, we propose
to limit the horizontal propagation of the thermal perturbation by damping the convective terms

Figure 2. Computational domain �=(−L/2, L/2)×(0,H).
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in the temperature equation in sponge layers close to the domain exits |x |= L/2. The nonlinear
convection term in (12) is multiplied by a filter function

	
(x)=e−
(2|x |/�L)p (18)

where �∈(0,1) and p�1. This yields the modified heat equation

�T
�t

− 1√
Ra Pr

�T +	
(x)∇·(uT )=0 (19)

For the sake of simplicity, we use the same notation T for the truncated and standard temperatures,
respectively, solution of (19) and (12). The former corresponds to the choice of 
=1 and the latter
to 
=0.

The filter function 	
 rapidly decays when |x |≈ L/2, whereas 	
 −→1 in the center of the
computational domain, thus reducing to a classical convective term. The effect of 	
 is to introduce
a sponge layer, close to the vertical boundaries, where the convection of temperature is smoothly
damped through the outflow. As we will see in Section 5, such a treatment allows one to significantly
reduce the size of the computational domain � required to reach a given accuracy.

This approach, although different in its implementation, is similar to the perfectly matched
layer method used in computational electromagnetics and introduced by Berenger [10]. Boundary
conditions with a sponge are also commonly used for the numerical simulations of compressible
turbulent flows as jet flows, for instance, [13]. For these problems, the solution is driven to a
specified outflow state by adding in the sponge layer a cooling term to the right-hand side of the
equations. We found that our method, for the heat island problem (10)–(14), is less sensitive to
the parameters involved in the definition of the sponge functions.

3.3. A model formulated in terms of temperature fluctuations

By noting that a stratified profile of the temperature can be expressed in the momentum equation as
a gradient term, we decompose the potential temperature T into T =�y+�, which introduces the
temperature fluctuation �. By reporting this decomposition into (10), (11), (19) and (13), recalling
that u=(u,v) and, introducing the new pressure variable P= p−�y2/2, we finally obtain the
system of equations

�u
�t

−
√

Pr

Ra
�u+∇·(u⊗u)+∇P=�e2 (20)

∇ ·u=0 (21)
��

�t
− 1√

Ra Pr
��+	
(x)(∇·(u�)+�v)=0 (22)

u(x,0)=0, �(x,0)=0 (23)

which is supplemented with
u(x, t)=0, x∈� (24)

�(x, t)= 1

2

(
tanh

(
2x+1

2�

)
− tanh

(
2x−1

2�

))
, x∈�0={x∈�; y=0} (25)

�(x, t)=0, x∈�\�0 (26)

In the following section, the numerical approximation of (20)–(26) is addressed.
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4. NUMERICAL APPROXIMATION

The numerical discretization of (20)–(26) is achieved by using a second-order projection scheme
in time coupled with a second-order finite volume approximation in space. The unknowns are
placed on a staggered mesh as for the classical MAC scheme [16].

4.1. Time discretization

The natural convection problem (20)–(26) is solved in two steps decoupling the computation of the
temperature fluctuation and of the velocity–pressure unknowns. A second-order projection scheme
[17–19] is first applied to solve the momentum equations (20) and to enforce the incompressibility
constraint (21).

Let �t>0 stand for the time step and tk =k�t discrete time values. Let us consider that
(u j , P j ,� j ) are known for j�k. The computation of (uk+1, Pk+1) consists in:

• Computing a predictor ũk+1 by solving

ũk+1−uk

�t
−
√

Pr

Ra
�
( ũk+1+uk

2

)
+∇Pk

= 1

2
(3�k−�k−1)e2− 3

2
∇ ·(uk⊗uk)+ 1

2
∇·(uk−1⊗uk−1) (27)

ũk+1=0 on � (28)

• Projecting to obtain a divergence free velocity uk+1:

uk+1− ũk+1

�t
+ 1

2
∇(Pk+1−Pk)=0 (29)

∇ ·uk+1=0, uk+1 ·n=0 on � (30)

Finally, the temperature variation �k+1 is computed by solving

�k+1−�k

�t
− 1√

Ra Pr
�

(
�k+1+�k

2

)

=−	
(x)

(
3

2
(∇ ·(uk�k)+�vk)− 1

2
(∇ ·(uk−1�k−1)+�vk−1)

)
(31)

�k+1= 1

2

(
tanh

(
2x+1

2�

)
− tanh

(
2x+1

2�

))
on �0, �k+1=0 on �\�0 (32)

Hence, viscous and diffusion terms are discretized with the Crank–Nicolson scheme, whereas
nonlinear convective terms are integrated by the second-order Adams–Bashforth scheme. Scheme
(27)–(32) is globally second-order accurate. This semi-implicit/explicit approach is frequently
used (see, for instance, [20, 21]) for the time discretization of the Navier–Stokes equations and
is well suited especially when time-dependent solutions are computed. As pointed out in [22],
second-order projection methods are not appropriate for seeking steady-state solutions with large
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time steps. Note that due to the explicit treatment of the convective terms, the time step is
limited here by a Courant–Friedrichs–Lewy (CFL) condition and is therefore relatively small. The
approximate stationary solutions obtained by using (27)–(32) may depend on the time step due
to the discretization error (see [23]) of the splitting scheme. Therefore, special care is required
when the spatial discretization and the stationarity criterion are defined so that these errors become
negligible.

Finally, note that the temperature is computed once the projected (divergence-free) velocity
is obtained. A different approach is used in [9, 15, 24]: the temperature is first computed; then
the velocity field is obtained by using the temperature at the new time level. As we will see
in Section 5.1, both time-stepping schemes achieve a second-order accuracy and provide similar
results. In addition, in [9, 24], a BDF projection scheme is implemented to discretize the advection–
diffusion terms. The BDF scheme may be more efficient for the computation of nonstationary
solutions as it provides a more accurate approximation of the pressure. In the case of stationary
solutions, which are our main concern in this paper, the more classical approach used here provides
satisfactory results.

4.2. Space discretization

4.2.1. Mesh and unknown locations. Owing to the combined effects of the gravity force and the
vertical stratification, flow variables decay rapidly with respect to the vertical elevation. Therefore,
the domain � is discretized by using a uniform subdivision in the y-direction. A nonuniform grid
is required in the x-direction as L�H . Let N and M denote two integers and let

xi = L

2
(i�) for i=0, . . . ,N , �= L

N

y j = jh for j =0, . . . ,M, h= H

M

The mesh density function  is defined by

(x)= 2x−L+
1 tanh(
2x)−
1 tanh(
2(L−x))

L+
1 tanh(
2L)
(33)

for x ∈(0, L). Note that  takes its values in (−1,1). With this distribution of the grid points in
the horizontal direction, the steps �i = xi −xi−1 increase within the distance from the center of the
heated element. The parameters 
1 and 
2 are chosen so that the lengths �i are of order h in the
neighborhood of the heated plate Q=(− 1

2 ,
1
2 ).

We introduce points xi+1/2 :=(xi +xi+1)/2 for i=0, . . . ,N−1, and y j+1/2 :=(y j + y j+1)/2 for
j =0, . . . ,M−1. All terms in Equations (27), (29), (30) and (31) are discretized in space by using
second-order centered finite volume schemes. The discrete unknowns are given on a staggered
grid (see [16]): discrete pressure values are located at the center of mesh cells Ki−1/2, j−1/2=
(xi−1, xi )×(y j−1, y j ), vertical velocity and temperature values are located at the center of mesh
cells Ki−1/2, j =(xi−1, xi )×(y j−1/2, y j+1/2), and those of the horizontal velocity are located at the
center of mesh cells Ki, j−1/2=(xi−1/2, xi+1/2)×(y j−1, y j ), as it is shown in Figure 3. We define
the vector uk+1∈R(N−1)M of components uk+1

i j and similarly, vk+1∈RN (M−1),Pk+1∈R(N−1)(M−1)

and hk+1∈RN (M−1) of components vk+1
i j , Pk+1

i j and �k+1
i j , respectively.
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Figure 3. Cells Ki−1/2, j−1/2 (solid), Ki−1/2, j (dashed) and Ki, j−1/2 (dotted)
and their corresponding discrete values.

In [9], the discrete temperature is located at the pressure nodes (xi−1/2, y j−1/2). However, this
choice implies interpolations in order to compute the contribution of temperature in the vertical
velocity momentum equation and vice versa. A more convenient choice for natural convection
problems is to place temperature at the same nodes as the vertical velocity.

4.2.2. Discrete systems. The discretization of (27) is achieved by integration of the equation of the
horizontal (respectively, vertical) velocity component over the volume cells Ki, j−1/2 (respectively,
Ki−1/2, j ). Gradient and Laplace operators are classically approximated by centered second-order
finite volume schemes. Approximation of the nonlinear terms requires second-order interpolations
of velocity components at the interfaces; for instance, we use∫ y j

y j−1

u2(xi−1/2, y)dy≈h

(
u2i j +u2i−1, j

2

)
and ∫ xi+1/2

xi−1/2

(uv)(x, y j )dx≈
(
ui j +ui+1, j

2

)
(�i+1vi j +�ivi+1, j )

(�i+1+�i )

Similar interpolation rules are also applied to discretize the equation satisfied by the vertical
velocity v. This leads to the system of equations

ũk+1+ �t

2

√
Pr

Ra
A1ũk+1 = −�tG1Pk+uk− �t

2

√
Pr

Ra
A1uk

−�t

2
(3N1(uk,vk)−N1(uk−1,vk−1)) (34)

ṽk+1+ �t

2

√
Pr

Ra
A2̃vk+1 = −�tG2Pk+vk− �t

2

√
Pr

Ra
A2vk

− �t

2
(3N2(uk,vk)−N2(uk−1,vk−1))

+ �t

2
(3hk−hk−1) (35)
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where matrices Ai are discrete approximations of the operator −� with appropriate treatment of
the boundary conditions for the velocity components, Gi are the ones of the gradient components
and Ni are the ones of the nonlinear terms.

With the use of the staggered implementation of the discrete values on the mesh, several
possibilities are offered for the treatment of boundary conditions. Concerning the vertical velocity
component, we choose to impose the boundary conditions on vertical boundaries at grid points
{(x0, y j ), j =1, . . . ,M−1} and {(xN , y j ), j =1, . . . ,M−1}. This yields a modified formula for the

discretization of �2v/�x2 at the first point away from the vertical boundary, that is∫
K1/2, j

�2v
�x2

(x, y)dx dy≈h

(
v3/2, j −v1/2, j

x3/2−x1/2
− v1/2, j −v0, j

x1/2−x0

)
A similar formula applies at the last inner point in the horizontal direction, that is, xN−1/2. On
horizontal boundaries, boundary conditions for v are imposed at points {(xi−1/2, y0), i=1, . . . ,N }
and {(xi−1/2, yM ), i=1, . . . ,N }. In the vertical direction, the use of second-order centered formula
and of uniform mesh points allows us to apply a discrete Fourier transform [25]. We thus obtain a
set of independent and symmetric tridiagonal systems that can be efficiently solved with the LDLT

algorithm.
Boundary conditions for u on the vertical boundaries are also imposed at mesh points, that

is, {(x0, y j−1/2), j =1, . . . ,M} and {(xN , y j−1/2), j =1, . . . ,M}. However, at the top and bottom
horizontal boundaries, values at ghost points y−1/2=−h/2 and yM+1/2=H+h/2 are used to
impose boundary conditions with a second-order extrapolation formula: we introduce ghost velocity
values

ui,−1=−ui,1 and ui,M+1=−ui,M for i=1, . . . ,N

The discretization of �2/�y2 on the sequence of mesh points y1/2, . . . , yM−1/2 with a second-order
centered finite volume scheme also yields a discrete operator that can be easily diagonalized by
applying a discrete Fourier transform [25].

The discrete version of (29) is obtained similarly

uk+1 = ũk+1− �t

2
G1/

k+1

vk+1 = ṽk+1− �t

2
G2/

k+1
(36)

where /k+1=Pk+1−Pk . Note that due to the staggered locations of the unknowns, no boundary
conditions for the pressure are required in the correction step (36). Therefore, discrete pressure is
defined only at interior points.

The discretization of the incompressibility constraint is achieved by integrating (30) over the
pressure cell Ki−1/2, j−1/2, leading to

D1uk+1+D2vk+1=0 (37)

where D1 and D2 are approximations of �/�x and �/�y. Combining (36) and (37), we deduce the
linear system satisfied by /, namely

(D1G1+D2G2)/
k+1=− 2

�t
(D1ũk+1+D2̃vk+1) (38)
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Once (38) is solved, the velocity is updated with (36). The linear system defined by (38) can be
solved efficiently by applying the same discrete transform used for the vertical velocity component.

The temperature equation (31) is integrated over the volume cells Ki−1/2, j , leading to

hk+1+ �t

2
√
Ra Pr

A2h
k+1 = hk− �t

2
√
Ra Pr

A2h
k

− �t

2
wc(3N3(uk,vk,hk)−N3(uk−1,vk−1,hk−1))

− ��t

2
wc(3v

k−vk−1) (39)

where wc={	i j
c }∈RN (M−1), 	i j

c =	c(xi−1/2). Boundary conditions for temperature are treated
as for the vertical velocity component.

5. NUMERICAL RESULTS

The main purpose of this paper is to produce reference stationary solutions for heat island flows at
Rayleigh numbers Ra�105. In our study the stratification coefficient � is fixed as �=1. Dependency
of solutions upon this parameter will be addressed in further studies.

First, the accuracy of our code is evaluated by computing stationary solutions in a square
differentially heated cavity. For this test case, benchmark solutions available in [24] are used for
comparison. Then, stationary solutions for flows in a heat island are studied. The methodology
used to produce accurate results is detailed and solutions are described and analyzed.

5.1. Validation of the code: the square differentially heated cavity test case

In order to assess the validity of our code and to check the accuracy of the numerical scheme
(34)–(39) we have performed numerical simulations of stationary solutions to the square differen-
tially heated cavity for values of the Rayleigh number Ra=106,107 and 108.

Le Quéré [24] produced accurate benchmark solutions for this problem. In [24], Chebyshev
polynomials were used for the spatial approximation and an influence matrix technique was applied
in order to enforce the divergence-free condition. Note that this problem, described in [21, 24, 26],
differs from the heat island problem by the computational domain and the boundary conditions.
However, the discrete system (34)–(39), with 
=0 and �=0, applies as well to this test case.

Stationary solutions were obtained on uniform grids, in both horizontal and vertical directions,
with mesh sizes decreasing from 1

32 to 1
1024 . The choice of uniform grids is not optimal for this

problem as boundary layers develop along the vertical heated walls: a large number of points is
thus required in order to obtain accurate results. Such a choice is, however, convenient and allows
us to easily check the code accuracy.

The characteristic values suggested by De Vahl Davis and Jones [26] were computed and
compared with those of the benchmark solutions [24]. All these values are recovered and a second-
order spatial convergence is obtained (see Figure 4).
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Figure 4. Spatial accuracy for the square differentially heated cavity test case at Ra=106. Solid line,
slope 2; dashed line, horizontal velocity; dotted line, vertical velocity; dashed-dotted line, Nusselt number.

5.2. Stationary solutions of flows in a heat island

Due to the presence of the vertical stratification, the thermal perturbations are convected in the
horizontal direction far from the heated source line. As a consequence, very long domains have
to be used in order to produce accurate results. Numerical simulations in small computational
domains are contaminated by artificial boundary layers that develop at the outflow boundaries
|x |= L/2. If the domain length L is not large enough, the temperature cannot smoothly relax
toward the vertical stratified profile imposed on the boundaries.

For fixed Rayleigh numbers and mesh sizes, numerical simulations in domains with increasing
lengths are performed with the standard heat equation, that is, (31) with 
=0. The effects of L and
H on the accuracy of the results are investigated. This approach, although time consuming, allows
one to produce reference solutions. Numerical simulations with the truncated temperature equation
(
=1) are then performed for comparison. This study demonstrates the efficiency of the thermal
sponge layers. Finally, stationary solutions at Rayleigh numbers Ra�105 are computed on meshes
with a finer resolution. Characteristic values are reported and various profiles are reproduced and
analyzed.

The stationary state of the numerical simulations was assumed to be reached when time variations
of flow variables are controlled as it follows

max
n�0

{
|uk+1−uk |∞

�t
,
|vk+1−vk |∞

�t
,
|hk+1−hk |∞

�t

}
�Tol

where Tol∈(10−10,10−8) is a given parameter. When this criterion is satisfied, we have always
noted that |Pk+1−Pk |∞/�t is also small. In general, the discrete time variation of the pressure
is four orders of magnitude larger than the ones of the velocity components. This criterion not
only ensures that the numerical scheme has converged to a discrete stationary solution but the
numerical solutions were also found to be independent of �t up to the machine accuracy. The time
step is chosen so that the numerical stability due to the explicit treatment of the nonlinear terms
is ensured: the CFL number is smaller than 0.5.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:631–655
DOI: 10.1002/fld



644 T. DUBOIS AND R. TOUZANI

5.2.1. Numerical simulations in large elongated domains. For fixed vertical resolutions, h= 1
16 ,

1
32

and 1
64 , and Rayleigh numbers Ra=103,104 and 105, numerical simulations were performed for

increasing values of the height L and length H of the computational domain. The discrete systems
(34)–(39) with the parameter 
 set to zero was used in order to first test the classical heat equation.
The temperature fluctuation � is the flow variable for which convergence with respect to the domain
size is the slowest. Therefore, we choose to use as reference value to compare simulations in
different domains the minimum value reached by � inside the computational domain. Recalling
that �=(−L/2, L/2)×(0,H), we denote

�(L ,H)
min = min

(x,y)∈�
�(x, y) (40)

Note that for stationary solutions, the minimum is reached above the center of the heated element,
namely, on the axis x=0 and for y>0. Recalling that the domains are elongated (L�H ) due
to the stratified environment, the length L is increased with sufficiently large increments so that
significant variations of �(L ,H)

min are obtained before convergence is reached. We define by

�ref= lim
(L ,H)→∞�(L ,H)

min (41)

In practice, we consider that the above limit is reached when the change in �(L ,H)
min becomes smaller

than (h2/10)�(L ,H)
min . This convergence criterion is probably too restrictive: even if the numerical

spatial accuracy is O(h2) the constant is often much larger than unity. However, an a priori
convergence test has to be restrictive in order to ensure accurate results. By performing a posteriori
comparisons of �ref for different mesh sizes, we found indeed that the second-order accuracy is
recovered. We denote by (L ref,Href) the domain sizes found according to the above convergence
criterion. Values obtained for the different Rayleigh numbers and mesh sizes are given in Table I.
We observe that the domain length L ref is not sensitive to the Rayleigh number, whereas the domain
height Href, for a fixed resolution, decreases when Ra increases. The strength of the stratification
grows with the Rayleigh number: the flow is pushed down to the ground.

Table I. Estimate of the size of the computational domain for
various mesh sizes h and Rayleigh numbers Ra.

Ra Ny/H (Lc,Hc) (Lref,Href)

103 16 (960,8) (3200,12)
32 (2560,10) (6200,16)
64 (5200,14) (10000,20)

104 16 (640,5) (3200,8)
32 (1920,6) (6200,10)
64 (4200,8) (10000,12)

105 16 (480,3) (3200,6)
32 (1280,4) (6200,8)
64 (3200,6) (10000,10)
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Figure 5. Convergence of �(L ,H) at Ra=104 with respect to the domain length for
H =4 (dotted line), H =6 (dotted-dashed line) and H =8 (solid line). The dashed line

corresponds to the expected accuracy h2=1/322.

For (L ,H) given, we define a relative error estimate by

�(L ,H)= |�(L ,H)
min −�ref|

|�ref| (42)

For fixed Ra and H , �(L ,H) is an overall decreasing function. We denote by (Lc,Hc) the minimum
domain sizes so that �(L ,H) becomes smaller than the expected numerical accuracy, namely h2.
Estimates of these minimal values are given in Table I.

Figure 5 represents the convergence history of �(L ,H) with respect to the domain length L
for H =4,6 and 8. The Rayleigh number is Ra=104 and the vertical resolution is h= 1

32 .
A rough estimate shows that the convergence rate of the minimum temperature fluctuation toward
the reference value �ref behaves like L−1.2. The scheme accuracy is reached for H =6 and L of
the order of 2000 (see also Table I). The same behavior with respect to L was found for other
vertical resolutions and Rayleigh numbers.

In Figure 6, the convergence history of �(L ,H) for H fixed to Hc is represented for Ra=103,104

and 105. The convergence rate of �(L ,H) is found to be independent of the Rayleigh number: all
curves have the same slope in logarithmic scales. In addition, the numerical accuracy h2=1/322

is reached by �(L ,Hc) for decreasing values of L when Ra is increased.
For the vertical resolution h= 1

64 , the computation of the reference solution in the domain
�ref=(0, L ref)×(0,Href) with L ref=10000 was achieved with 28000 points in the horizontal
direction. This guarantees that the mesh satisfies �i ≈h in the neighborhood of the heated element.
With the use of the mapping function (33), we have in that case: max�i/min�i =74. Therefore,
35.8 (respectively, 17.9) million points were used to compute the reference solution at Ra=103

(respectively, 105) and 35000 (respectively, 200000) time iterations were required to reach the
stationary solution. This represents 600 (respectively, 1500) monoprocessor computing hours on
an IBM Power4 computer.
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Figure 6. Convergence of �(L ,Hc) with respect to the domain length for Ra=103

(solid line), Ra=104 (dotted line) and Ra=105 (dashed-dotted line). The dashed line
corresponds to the expected accuracy h2=1/322.

Owing to this need for a large amount of computational resources, such a study is not feasible
on meshes with smaller grid sizes in the vertical direction. By extrapolating the values Lc and Hc
found for h= 1

16 ,
1
32 and 1

64 (see Table I), we can roughly estimate these minimal values for a finer
mesh, namely h= 1

128 . We obtain (Lc,Hc)=(12000,18) at Ra=103, (Lc,Hc)=(10000,12) at
Ra=104 and (Lc,Hc)=(8000,10) at Ra=105. Therefore, a resolution of at least 115 million
points would be required in order to compute a reference solution on a grid with a vertical resolution
h= 1

128 . As it is shown in the following sections, the use of the truncated heat equation (
=1)
allows us to significantly relax these constraints on the computational parameters.

5.2.2. Efficiency of the truncated temperature equation. The effect of the filter function (18) is to
smoothly damp the convective terms in the heat equation in the vicinity of the domain boundaries
|x |= L/2. By introducing such thermal sponge layers, we aim at improving the accuracy of the
numerical simulations when the computational domains are not long enough to ensure a O(h2)
approximation.

Numerical simulations of stationary solutions at Ra=105 have been performed with h= 1
16 ,

h= 1
32 and 1

64 . The domain height has been fixed at H =6. In that case, the errors �(L ,6) are
dominated by the behavior with respect to L as Hc=3 for h= 1

16 , Hc=4 for h= 1
32 and Hc=6 for

h= 1
64 (see Table I). The errors �(L ,6) produced by the standard and the modified heat equations

are used to compare the efficiency of both models. The values �=0.85 and p=8.0 have been
retained for the filter function (18). These parameters were found to be efficient for the numerical
simulations of stationary solutions. A parametric study of the truncated temperature equation is
beyond the scope of this paper. However, this question is important and will be addressed in future
works on this problem.

In Figure 7, the errors �(L ,6) obtained for h= 1
32 with the standard and the truncated heat

equations are plotted. The curve corresponding to the truncated heat equation has a very fast
decay for small L , namely L�250. For larger values of L , both curves have similar behaviors.
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Figure 7. Convergence of �(L ,H =6) at Ra=105 with respect to the domain length obtained with
the standard heat equation (solid line) and the truncated version (dashed-dotted line). The dashed line

corresponds to the expected accuracy h2=1/322.

This indicates that the effects of the nonlinear truncation are stronger on short computational
domains. In the region corresponding to L>250, the truncated equation produces errors about 10
times smaller than the standard equation. The error becomes smaller than h2 for L�160 when the
truncated heat equation is used. With the standard heat equation L has to be larger than 1600 to
reach the scheme accuracy (see also Table I).

Recalling that Lc is the minimum domain length necessary to recover the h2 accuracy, we obtain
for Lc the values 40,160 and 480 with the truncated equation and for the respective resolutions
h= 1

16 ,
1
32 and 1

64 , whereas with the classical heat equation the values 480,1280 and 3200 are,
respectively, found (see Table I).

In addition, by examining the time history of the discrete time variation |hn+1−hn|∞/�t , it
appears that the convergence to the stationary solution is achieved in less time iterations with the
truncated equation than with the classical one. For example, in �=(−240,240)×(0,4) and for
h= 1

32 the stationary solution at Ra=105 is reached after 32000 time iterations with the truncated
heat equation, whereas 48000 time iterations are needed with the classical one (see Figure 8).

Therefore, for a given accuracy, stationary solutions can be computed with the truncated heat
equation in significantly smaller computational domains than with the classical temperature equa-
tion and in less time iterations. This results in the use of less computational resources. As a
consequence, this approach allows us to compute stationary solutions on meshes with a finer
vertical resolution.

5.2.3. Accurate stationary solutions. Direct numerical simulations at Ra=103,104 and 105 and
with a vertical resolution h= 1

128 have been performed with the truncated temperature equation.
The computational parameters are listed in Table II. The estimates derived in Section 5.2.1 are
used to determine the computational domains. In addition, in agreement with the previous section,
domain lengths about 3 times smaller than the estimated values are retained.

In order to characterize the stationary solutions, the maximum values of the velocity components
(u,v), the temperature variation �, the vorticity �=�v/�x−�u/�y and the streamfunction 	 are
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Figure 8. Convergence history of maxi, j |�n+1
i, j −�ni, j |/�t for the standard (solid line) and the truncated

(dotted line) heat equations at Ra=105. The vertical resolution is h= 1
32 , the time step is �t=0.1 and

the computational domain is �=(−240,240)×(0,4).

Table II. Computational parameters for numerical simulations on meshes with h= 1
128 .

Ra 103 104 105

(L ,H) (4400,18) (3600,12) (2560,10)
(N ,M) (19000,2304) (16500,1536) (12000,1280)
�t 0.1 0.05 0.025
Tstat 4893 6569 10902

Table III. Characteristic values of the stationary solutions.

Ra 103 104 105

�min −0.024823 −0.071289 −0.166316
y 1.36191 0.94640 0.84320
umax 0.118887 0.174844 0.179054
(x, y) (−0.52314,0.17705) (−0.36781,0.13255) (−0.30643,0.09322)
vmax 0.125594 0.228250 0.322483
y 0.55124 0.44684 0.42552
vmin −0.030470 −0.039291 −0.079265
(x, y) (−0.85107,0.41913) (−0.60361,0.32122) (−0.39114,0.64777)
�max 2.06900 3.951325 5.921375
x 0.49642 0.48402 0.47813
	max 0.042954 0.048265 0.040272
(x, y) (−0.60014,0.59882) (−0.38883,0.45575) (−0.25610,0.45867)
Nu 0.148605 0.295132 0.643594
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Figure 9. Profiles of the temperature variation � (a) and of the vertical velocity v (b) at the center of the
heated element, i.e. at x=0, for Ra=103 (solid line), Ra=104 (dashed line) and Ra=105 (dashed-dotted

line). The vertical resolution h= 1
128 and the truncated heat equation were used.

given in Table III. The locations in the computational domains where these extrema are reached
are also collected: when only one of the coordinates is listed, the other one is equal to 0.

Also reported in Table III is the Nusselt number, which is defined by

Nu=− 1

L

∫ L/2

−L/2

��

�y
(x, y=0)dx

As expected, this value, which measures the intensity of the heat transfer, increases with the
Rayleigh number.

The velocity components and the temperature fluctuation decay rapidly with respect to the
elevation y as it is shown in Figures 9 and 11 representing the vertical profiles at the center of
the heated element x=0. The gravitational force and the vertical stratification limit the vertical
propagation of perturbations. In the horizontal direction (see Figure 10(b)), the vertical velocity
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Figure 10. Profiles of the temperature variation � (a) and of the vertical velocity v (b) at elevation y=0.5,
for Ra=103 (solid line), Ra=104 (dashed line) and Ra=105 (dashed-dotted line). The vertical resolution

h= 1
128 and the truncated heat equation were used.

v vanishes rapidly for x outside of the heated region, that is, for |x |>0.5. Therefore, vertical
convection is essentially localized above the heated element: this behavior is independent of the
Rayleigh number. However, its intensity increases with Ra. Indeed, the maximum value reached by
the vertical velocity component increases with Ra (see Figure 10(b) and Table III). The temperature
fluctuation and the horizontal velocity have a similar behavior in the horizontal direction for |x |�2
(see Figures 10(a) and 12): they decay slowly to a small but nonzero value, which grows with Ra.
Therefore, the convection outside the heated source line is mainly horizontal. This illustrates the
difficulty in approximating such flows in limited computational domains.

The profiles of the temperature fluctuation, plotted in Figures 9(a) and 10(a), show that the
ascending propagation of the thermal perturbation is reduced when Ra is increased. Simultaneously,
the profile of the velocity components exhibit largest extrema and steepest gradients for y�1 (see
Figures 9(b) and 11). In addition, elevations where the velocity components are maximum decrease
for growing Ra (see Table III). Hence, when the Rayleigh number is increased, the flow is pushed
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Figure 11. Profile of the horizontal velocity u at x=0.25 for Ra=103 (solid line), Ra=104 (dotted line)
and Ra=105 (dashed line). The vertical resolution h= 1

128 and the truncated heat equation were used.
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Figure 12. Profile of the horizontal velocity u at elevation y=0.1 for Ra=103 (solid
line), Ra=104 (dotted line) and Ra=105 (dashed line). The vertical resolution h= 1

128
and the truncated heat equation were used.

down to the ground. At larger Rayleigh numbers, we expect that the competition between the
natural convection, inducing an ascending propagation, and the vertical stratification, limiting this
effect, will induce a loss of symmetry of the solutions leading to unsteady flows.

To better illustrate the effect of the vertical stratification, isolines of the temperature fluctuation
� and the vorticity � are displayed in Figures 13 and 14 in a region surrounding the heat island
perturbation, that is, for |x |�5 and y�3. The thermal plume in the form of a mushroom, typical
in natural convection problems (see [8], for instance), cannot develop in a stratified medium.
Instead, the main thermal structure is centered above the heated plate, symmetric with respect to
the axis x=0 and very elongated in the horizontal direction. Above, a thermal sink characterized
by negative temperature variation � is observed. The intensity of this structure grows with Ra,
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Figure 13. Isolines of the temperature variation for increasing Rayleigh numbers. Solid lines: 0.01, 0.02,
0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.12, 0.14, 0.16, 0.2, 0.3, 0.5, 0.7.

whereas its vertical position decreases. The vorticity structures (see Figure 14) exhibit multi-cell
symmetric patterns. They become thinner when Ra increases and are clearly pushed down to the
axis y=0.
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Figure 14. Isolines of the vorticity for increasing Rayleigh numbers.

5.2.4. Computational efficiency. A parallel version of the Fortran 90 code based on implicit
communications (OpenMP) was used for the numerical simulations presented in this paper: an effi-
ciency of approximately 6.8 is found on eight processors on a cluster of IBM Power 4 computers.
In order to perform the numerical simulations presented in Section 5.2.3, 6000 monoprocessor
hours were necessary. The CPU time per iteration and per node used by the code is 2.5×10−6 s on
IBM Power 4 processors. Concerning the memory, 20 real unknowns (8 bytes) have to be stored
for each node of the mesh.
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6. CONCLUDING REMARKS AND PERSPECTIVES

In this paper, steady-state solutions of a natural convection problem in an unbounded domain are
investigated by direct numerical simulations. For this problem, the flow is thermally stratified in
the vertical direction and perturbed by a local heat island located on the ground. Owing to vertical
stratification, the flow circulation is dominated by horizontal convection, so that perturbations are
propagated in the horizontal direction far from the heated source. Stationary solutions are first
investigated by numerical simulations in very elongated domains for moderate vertical resolutions,
that is, h= 1

16 ,
1
32 and 1

64 . Repeated computations in increasing domains have been performed:
the minimum length and height necessary to ensure a O(h2) accuracy have been estimated at
Ra=103,104 and 105. This approach, although time and memory consuming, provided reference
simulations that have been used to validate and compare results obtained with a truncated heat
equation. We have shown that the use of a suitable thermal sponge layer placed at the vertical
outflow allows one to noticeably reduce the size of the computational domain. Therefore, numerical
simulations on finer grids are made accessible. The stationary solutions at the aforementioned Ra
have been computed on grids with vertical resolution h= 1

128 . Characteristic values of these steady
states have been provided.

The thermal circulation induced by the heat island consists in symmetric multi-cell pattern
centered above the heated element. Flow structures are pushed down to the ground when the
Rayleigh number is increased. In addition, their intensity grows with Ra. We therefore may expect
that the stability of steady states will be lost at larger Ra leading to nonstationary solutions. The
thermal sink found above the heat island should first oscillate with respect to the vertical axis
x=0 in a periodic time regime. The numerical study of the development of instabilities and the
detection of successive transitions from steady state to turbulent flows is our main motivation.
Contributions to this project will be presented in forthcoming papers. Dependency of solutions
upon the stratification coefficient is also an open question for this problem. Such a study will be
addressed in future works.
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